A low-cost inorganic oxide as dual-functional electrolyte additive towards long cycling Li-rich Mn-based cathode materials (2025)

1. Jia, H.; Xu, W. Electrolytes for high-voltage lithium batteries. Trends. Chem. 2022, 4, 627-42.

2. Ryu, H. H.; Park, K. J.; Yoon, C. S.; Sun, Y. K. Capacity fading of Ni-rich Li[NixCoyMn1-x-y]O2 (0.6 ≤ x ≤ 0.95) cathodes for high-energy-density lithium-ion batteries: bulk or surface degradation? Chem. Mater. 2018, 30, 1155-63.

3. Lan, G.; Zhou, H.; Xing, L.; et al. Insight into the interaction between Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode and BF4--introducing electrolyte at 4.5 V high voltage. J. Energy. Chem. 2019, 39, 235-43.

4. Ko, S.; Obukata, T.; Shimada, T.; et al. Electrode potential influences the reversibility of lithium-metal anodes. Nat. Energy. 2022, 7, 1217-24.

5. Xu, W.; Wang, J.; Ding, F.; et al. Lithium metal anodes for rechargeable batteries. Energy. Environ. Sci. 2014, 7, 513-37.

6. Huang, Y.; Liu, X.; Yu, R.; et al. Tellurium surface doping to enhance the structural stability and electrochemical performance of layered Ni-rich cathodes. ACS. Appl. Mater. Interfaces. 2019, 11, 40022-33.

7. Lee, W.; Muhammad, S.; Sergey, C.; et al. Advances in the cathode materials for lithium rechargeable batteries. Angew. Chem. Int. Ed. 2020, 59, 2578-605.

8. Zheng, H.; Han, X.; Guo, W.; et al. Recent developments and challenges of Li-rich Mn-based cathode materials for high-energy lithium-ion batteries. Mater. Today. Energy. 2020, 18, 100518.

9. Lu, Z.; Liu, D.; Dai, K.; et al. Tailoring solvation chemistry in carbonate electrolytes for all-climate, high-voltage lithium-rich batteries. Energy. Storage. Mater. 2023, 57, 316-25.

10. Wu, H.; Dong, J.; Zhang, Y.; et al. Lattice oxygen redox reversibility modulation in enhancing the cycling stability of Li-rich cathode materials. Adv. Funct. Mater. 2023, 33, 2303707.

11. Lee, H.; Nam, H.; Moon, J. H. Seamless integration of nanoscale crystalline-amorphous MoO3 domains for high-performance lithium-sulfur batteries. Energy. Storage. Mater. 2024, 70, 103551.

12. Su, H.; Chen, Z.; Li, M.; et al. Achieving practical high-energy-density lithium-metal batteries by a dual-anion regulated electrolyte. Adv. Mater. 2023, 35, e2301171.

13. Han, J. G.; Lee, S. J.; Lee, J.; Kim, J. S.; Lee, K. T.; Choi, N. S. Tunable and robust phosphite-derived surface film to protect lithium-rich cathodes in lithium-ion batteries. ACS. Appl. Mater. Interfaces. 2015, 7, 8319-29.

14. Zhao, H.; Lei, D.; He, Y. B.; et al. Compact 3D copper with uniform porous structure derived by electrochemical dealloying as dendrite-free lithium metal anode current collector. Adv. Energy. Mater. 2018, 8, 1800266.

15. Yan, X.; Lin, L.; Han, X.; et al. Li dendrites inhibition realized by lithiophilic and ion/electron conductive 3D skeleton for Li metal anodes. Chem. Eng. J. 2021, 421, 127872.

16. Um, K.; Jung, C.; Nam, H.; Lee, H.; Yeom, S.; Moon, J. H. Janus architecture host electrode for mitigating lithium-ion polarization in high-energy-density Li-S full cells. Energy. Environ. Sci. 2024, 17, 9112-21.

17. Hu, A.; Chen, W.; Du, X.; et al. An artificial hybrid interphase for an ultrahigh-rate and practical lithium metal anode. Energy. Environ. Sci. 2021, 14, 4115-24.

18. Xie, Y.; Huang, Y.; Zhang, Y.; et al. Surface modification using heptafluorobutyric acid to produce highly stable Li metal anodes. Nat. Commun. 2023, 14, 2883.

19. Zhu, Z.; Liu, Z.; Zhao, R.; et al. Heterogeneous nitride interface enabled by stepwise-reduction electrolyte design for dense Li deposition in carbonate electrolytes. Adv. Funct. Mater. 2022, 32, 2209384.

20. Zheng, W. C.; Shi, C. G.; Dai, P.; et al. A functional electrolyte additive enabling robust interphases in high-voltage Li‖LiNi0.8Co0.1Mn0.1O2 batteries at elevated temperatures. J. Mater. Chem. A. 2022, 10, 21912-22.

21. Zhao, W.; Zheng, B.; Liu, H.; et al. Toward a durable solid electrolyte film on the electrodes for Li-ion batteries with high performance. Nano. Energy. 2019, 63, 103815.

22. Gao, H.; Cai, J.; Xu, G. L.; et al. Surface modification for suppressing interfacial parasitic reactions of a nickel-rich lithium-ion cathode. Chem. Mater. 2019, 31, 2723-30.

23. Liu, W.; Oh, P.; Liu, X.; et al. Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries. Angew. Chem. Int. Ed. 2015, 54, 4440-57.

24. Luo, C.; Liu, Q.; Wang, X.; et al. Synergistic-effect of diluent to reinforce anion-solvation-derived interfacial chemistry for 4.5 V-class Li||LiCoO2 batteries. Nano. Energy. 2023, 109, 108323.

25. Li, J.; Li, W.; You, Y.; Manthiram, A. Extending the service life of high-Ni layered oxides by tuning the electrode-electrolyte interphase. Adv. Energy. Mater. 2018, 8, 1801957.

26. Xiao, Z.; Liu, J.; Fan, G.; et al. Lithium bis(oxalate)borate additive in the electrolyte to improve Li-rich layered oxide cathode materials. Mater. Chem. Front. 2020, 4, 1689-96.

27. Zhao, Q.; Wu, Y.; Yang, Z.; et al. A fluorinated electrolyte stabilizing high-voltage graphite/NCM811 batteries with an inorganic-rich electrode-electrolyte interface. Chem. Eng. J. 2022, 440, 135939.

28. Cheng, F.; Zhang, X.; Qiu, Y.; et al. Tailoring electrolyte to enable high-rate and super-stable Ni-rich NCM cathode materials for Li-ion batteries. Nano. Energy. 2021, 88, 106301.

29. Shi, P.; Zhang, L.; Xiang, H.; Liang, X.; Sun, Y.; Xu, W. Lithium difluorophosphate as a dendrite-suppressing additive for lithium metal batteries. ACS. Appl. Mater. Interfaces. 2018, 10, 22201-9.

30. Piao, Z.; Xiao, P.; Luo, R.; et al. Constructing a stable interface layer by tailoring solvation chemistry in carbonate electrolytes for high-performance lithium-metal batteries. Adv. Mater. 2022, 34, e2108400.

31. Zhang, X.; Liu, G.; Zhou, K.; et al. Enhancing cycle life of nickel-rich LiNi0.9Co0.05Mn0.05O2 via a highly fluorinated electrolyte additive - pentafluoropyridine. Energy. Mater. 2022, 1, 100005.

32. Wu, D.; He, J.; Liu, J.; et al. Li2CO3/LiF-rich heterostructured solid electrolyte interphase with superior lithiophilic and Li+-transferred characteristics via adjusting electrolyte additives. Adv. Energy. Mater. 2022, 12, 2200337.

33. Qin, Y.; Wang, D.; Liu, M.; et al. Improving the durability of lithium-metal anode via in situ constructed multilayer SEI. ACS. Appl. Mater. Interfaces. 2021, 13, 49445-52.

34. Zhang, B.; Wang, L.; Wang, X.; et al. Sustained releasing superoxo scavenger for tailoring the electrode-electrolyte interface on Li-rich cathode. Energy. Storage. Mater. 2022, 53, 492-504.

35. Li, Y.; Li, W.; Shimizu, R.; et al. Elucidating the effect of borate additive in high-voltage electrolyte for Li-rich layered oxide materials. Adv. Energy. Mater. 2022, 12, 2103033.

36. Ye, C.; Tu, W.; Yin, L.; et al. Converting detrimental HF in electrolytes into a highly fluorinated interphase on cathodes. J. Mater. Chem. A. 2018, 6, 17642-52.

37. Zheng, H.; Zhang, C.; Zhang, Y.; et al. Manipulating the local electronic structure in Li-rich layered cathode towards superior electrochemical performance. Adv. Funct. Mater. 2021, 31, 2100783.

38. Li, S.; Liu, Y.; Zhang, Y.; et al. Interfacial oxygen coordination environment regulation towards high-performance Li-rich layered oxide cathode. Chem. Eng. J. 2023, 462, 142194.

39. He, W.; Liu, P.; Qu, B.; et al. Uniform Na+ doping-induced defects in Li- and Mn-rich cathodes for high-performance lithium-ion batteries. Adv. Sci. 2019, 6, 1802114.

40. Ji, Y.; Li, S.; Zhong, G.; et al. Synergistic effects of suberonitrile-LiBOB binary additives on the electrochemical performance of high-voltage LiCoO2 electrodes. J. Electrochem. Soc. 2015, 162, A7015.

41. Xu, G.; Pang, C.; Chen, B.; et al. Prescribing functional additives for treating the poor performances of high-voltage (5 V-class) LiNi0.5Mn1.5O4/MCMB Li-ion batteries. Adv. Energy. Mater. 2018, 8, 1701398.

42. Wu, D.; Zhu, C.; Wang, H.; et al. Mechanically and thermally stable cathode electrolyte interphase enables high-temperature, high-voltage Li||LiCoO2 batteries. Angew. Chem. Int. Ed. 2024, 63, e202315608.

43. Fu, A.; Lin, J.; Zheng, J.; et al. Additive evolved stabilized dual electrode-electrolyte interphases propelling the high-voltage Li||LiCoO2 batteries up to 4.7 V. Nano. Energy. 2024, 119, 109095.

44. Zhao, J.; Zhang, X.; Liang, Y.; et al. Interphase engineering by electrolyte additives for lithium-rich layered oxides: advances and perspectives. ACS. Energy. Lett. 2021, 6, 2552-64.

A low-cost inorganic oxide as dual-functional electrolyte additive towards long cycling Li-rich Mn-based cathode materials (2025)

References

Top Articles
Latest Posts
Recommended Articles
Article information

Author: Carlyn Walter

Last Updated:

Views: 6002

Rating: 5 / 5 (50 voted)

Reviews: 89% of readers found this page helpful

Author information

Name: Carlyn Walter

Birthday: 1996-01-03

Address: Suite 452 40815 Denyse Extensions, Sengermouth, OR 42374

Phone: +8501809515404

Job: Manufacturing Technician

Hobby: Table tennis, Archery, Vacation, Metal detecting, Yo-yoing, Crocheting, Creative writing

Introduction: My name is Carlyn Walter, I am a lively, glamorous, healthy, clean, powerful, calm, combative person who loves writing and wants to share my knowledge and understanding with you.